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\\ ABSTRACT
v

Even though a great deal of work has been done in
develoging models in the field of designing diagnostic tests
for fault isolation in digital systems, there is still a lack
of efficient and fast procedures.

Two approaches to the cost-effective design of fault
isolation procedures were presented here. They were oriented
specifically toward built-in-test (BIT) diagnostic subsystems
for modular electronic equipment.

A branch and bound solution approach was used in order to
find the optimal sequence of tests to be executed by the BIT to
isolate a single malfunctioned unit among a group of line
replaceable units. Computational results were presented and
discussed. A computer program listing of the solution technique

was included.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In recent years, interest has grown in the development
and use of automatic devices to test and checkout physical
systems of all types. Most of the attention in this field
has been oriented toward built-in-test (BIT) diagnostic
subsystems for modular military electronic equipment, mainly
in airborne and ground electronic equipment. BIT diagnostics
have the advantage of allowing fewer and iess qualified
maintenance personnel and fewer pieces of external test equip-
ment, which are generally quite erpensive.

A primary equipment is composed of modular line
replaceable units (LRUs), all of which operate independently.
Associated with each unit is an a priori probability of being in
failure, and it is assumed that the probabilities of multiple
failures are negligible.

Whenever the equipment malfunctions, a single LRU is
assumed to have failed, and two types of diagnostic tests
should be used for the primary and the secondary isolations.
The primary isolation tests will be automatically exescuted by

the BIT in order to identify the group of LRUs which contains
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the faulty unit. After the execution of the automatic BIT,
secondary isolation will be performed by semi-automatic or
manual means which incur time and extra equipment costs to

locate the single failed unit within a group of LRUs.

1.2 Statement of the Problem

Assume that equipment consists of n mutually exclusive
groups of LRUs. Associated with each LRU; is an a priori
probability Py which is the probability before any diagnosis
that the malfunction of the equipment is caused by the failure
of LRU; . Whenever the equipment fails, the BIT automatically
executes a sequence of primary diagnostic tests to isolate the
group which contains the single faulty LRU.

Each LRU could be either good or bad, therefore a set
of 2" tests is required to constitute a complete set of all
possible binary tests. However, if a test that checks a
subset of LRUs is passed, the test that checks the complement
of this subset must be a failure, and conversely. Therefore,
such a pair of tests is redundant, and in the quest for least-~
expected-cost procedures the more expensive of the pair can
be ignored. By this argument the number of possible different

n-1_1) after excluding

tests which can exist for n LRUs is (2
the two tests which examine all or none of the n LRUs.
Associated with each test, Tk which is included in the

primary diagnostic, there is a known cost, Ck. The total cost

of locating a particular faulty element is the sum of the costs

by ) '-. o )
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of the tests along the path which leads from the initial state,
in which no LRU is known to be good or bad, to the final

state representing the group containing the faulty unit, plus
the cost of secondary isolation of that group.

The problem is to design minimum-expected-cost test
procedures to be executed by the BIT. These can be described
by tree structures, with nodes and twigs. Each node of a tree
can be interpreted as a state of awrbiguity subset. The
ambiguity subset at each node consists of the twigs that are
descendant from the node. The test applied at a node serves
to partition the associated ambiguity subset, thus reducing the
ambiguity. The root node, or full subset, corresponds to a
state of complete ambiguity, while at the twigs, which
correspond to unit subsets and hence where the outcome is

determined, there is no further ambiguity.

1.3 Determination of States Following a Test

The following notation will be used throughout this

research.

Tk: Test k. A test is represented by an (n-bit) number
containing only the binary digits 0 and 1. A 0 is
assigned in position i of a test if LRU, must be good
in order for the test to pass. A 1 is placed in

position i of a test if LRU, is not tested.

S: State of the equipment prior to performing the test Ty -

A state is represented by an (n-bit) number containing

—




N(S):

I(S):

b(S§,s):

*
C(S):

only the binary digits 0 and 1. The n bits in the
designation of a state ocrrespond, sequentially from
left to right, to LRUl, LRU, . . . LRUn. A0 is
assigned in position i of a state if LRUi is known to
be good. A 1 is assigned in position i of a state if
LRU, is not yet tested. 1In the initial state there are
1's in all positions since none of the LRUs have been
tested.

State of the equipment if test T, Ppasses. This

state is computed by multiplying § and Tk bit by

bit with no carry.

State of the equipment if test Ty fails. This state

A

is computed by multiplying S and T the complement

K’
of Ty bit by bit without carry.
Number of remaining untested LRUs at state S.

Cost of test Ty -

Set of all possible tests which could be used at
state S.

Set of all tests which could be used to reach state
S(§,Tk) from state S.

A node representing state S.

Set of indices of the n(S) remaining untested LRUs

at node N(S).

A branch leading from node N(S8) to node N(S).

Minimum expected cost of a sequence of tests, given

that the current state is S.

e ginY - e~ N — e ——
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C(§,S): Expected cost of testing branch b(§,s).

E;: ° Expected cost for secondary isolation of LRU,.

The basic structure of a sequential testing diagram is

illustrated in Figure 1.1.

0111 Current State §

® ,
Q‘be QéJ’

Next State Next State

$(5,711 ) 5(8:T1y00’

Figure 1.1. Sequential testing diagram for example
of 4-LRUs.
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, |
In order to explain how the expected cost of any i
' sequential test procedure is computed, two feasible solutions
to the example problem defined in Table 1.1 are shown in
: Figure 1.2. '
3 {
TABLE 1.1
EXAMPLE PROBLEM
LRU 1 2 3 4
| Pi .45 .30 .20 .05
; E; 6 3 5 1
Tk Binary Designation of Test Ck i
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(
ﬂ Let Cl be the expected cost of the feasible test
procedure [TIOOO' TllOO' T0010] represented by tree (a) in
Figure 1.2.
*
C1 = C(1111)
* * ;
= Ciogp * Py C€(1000) + (p,+py+p,) C(0111) .
= Ciogp * Py CL1000) + (By*pytpy) (€105t prporpyC (0100) |
+p
(P3*Pgy = ]
———— C(0011)) :
P,*P3*Py ;
= * *
= Cygggp * Py C(1000) + p, C(0100) + (Py+P3+P,) (C1y 4
+ (P3*Py) P3 % 0010 Py =
- P,¥P;*P, o010 * B3P, C(0010)+ B;p,C (000 )

= Cr000 * Py By * Py By * Py Byt Py By

* (Pa*P3*Py) Cri00 * (P3*P4) Coo10

Let C2 be the expected cost of the feasible test

1@) procedure [(T;;40s Ty400) OF (T1100° TOOlO)] represented by )
51 tree (b) in Figure 1.2
' i
3 E!
*
C2 = C(1111)

* *
= Ci100 * (P;#P,) C(1100) + (py*p,) C(0011)

adapt.
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y _ + +o.) Py * 0 Py « 0
Py & Py =
+ (P3*+Py) (Chg10* ES:EZC(0010)+ 5;¢EZC(0001))

= Cy00 * P1 By * Py E; ¥+ P3 E3 + Py Ey

+

(P1*+P,)C1000 * (P3*P4)Co010

I
<]
.
o

This example shows that the first sequential testing
[ procedure [TlOOO’ TllOO’ TOOlO] is more economical than the

second one [(Ty)40- T1999)7 ©F (T11007 Too10)7.
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CHAPTER 2
LITERATURE REVIEW

All works which have been done in the area of the
optimization of fault detection and isolation procedures are
directed toward solving two basic problems.

l. Generating a least expected cost testing sequence
to be executed by the automatic BIT diagnostic (Primary
Isolation).

2. Determining a troubleshooting sequence which
minimizes the expected cost of secondary isolation to locate
the single failed unit within a group of LRUs identified by
the BIT primary diagnostic.

The only other problem which has been treated in the
literaturé is the one which restricts the repertoire of tests

to those which test only single elements and without even

assigning any probabilities to these tests. 1In this case, the

solution consists of deciding which test to omit and in what
sequence to perform the remaining tests. This problem can be

solved as a machine setup problem as the one in Glassey [6].

2.1 Primary Isolation

Johnson, et al. (9] prouposed using the information-

10

e
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K gain figure-of-merit in order to find a sequence of tests

that can be executed by an automatic diagnostic.

In spite of the fact that this method is easy to use,
it fails to guarantee optimum cost sequence.

Chang [ 3] used the distinguishability criterion to
produce a low expected cost testing sequence which is not
necessarily an optimal sequence.

Cohn and Ott [ 4] presented a recursive algorithm
which is based on the concept of dynamic programming. They
used set notation to design a test tree. For every possible
ambiguity subset, they assigned an evaluation, consisting of
the least expected cost of resolving that ambiguity. The
evaluation of the subset of complete ignorance is the cost
of the optimal tree. This evaluation function is computed by
! a recursion on the number of elements in the ambiguity subsets.

By treating the equipment states as stages in a
sequential decision process, Sheskin [11] applied probabilistic
dynamic programming to determine a minimum expected cost
testing diagram. Using the recursive relationship, the

" solution procedure moves backwards stage by stage. The

<

fi, solution procedure begins by equating the expected values of
:i the terminal states, which corresponds to the groups into

u% which the equipment is partitioned, to the expected costs of
P’ secondary isclation for these groups. At each state, a set
i? of possible decisions consists of all of the tests which can
'g be performed is considered and the optimal testing sequence
i

¢
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at this state is found, until it finds the optimal testing
diagram when starting at the initial state.

Aly [1] constructed the problem as a search tree, and
presen;ed a branch and bound algorithm to find the optimal testing

sequence.

2.2 Secondary Isolation

Gluss [ 7] solved the problem of having a fault
develop in a system consisting of n modules where each one
has several elements, and that it is required to dictate a
search strategy that will optimize the search in some fashion
by minimizing a stipulated cost function. He developed a
model, which assumes that over-all-tests of each module may
be performed, and individual item tests within modules; also,
the search is subject to the constraint that before conducting
item tests the faulty module must first be determined by
module tests.

Firstman and Gluss [ 5] extended the work in the
previous model of Gluss, in which the estimation of the
probabilities of faults lying in respective modules or
elements is performed in a different way from that in Gluss'
paper: they are computed from element reliability data by
manipulation of the element failure rate. Furthermore,
consideration is given to fault symptoms that are supplied by
weighting the probabilities according to the symptoms infor-
mation.

All the previous search models allow for the

possibility of a test not indicating the true state of the

TV T e o
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component tested. However when Butterworth [2 ] tackled the
problem, he used tests that always give the correct answer.
He developed several rules to find the optimal sequential
policiés for series, and parallel systems of independent
LRUs. For a series system, he indicated that the expected
cost for secondary isolation of the failed unit, given that
an equipment fault has been isolated to this unit by primary
diagnostic will be minimized by removing and replacing the /
LRUs in a nonincreasing sequence of the values of the ratio ;
of their probability of failure to the average time of
removing and replacing them.

Butterworth's rules fail to identify an optimal policy

for the simple system where the testing costs are identical

for all components. In this case the condition implies that
all the components have the same failure probabilities.
However, Halpern [8 ] presented a simple adaptive sequential
testing procedure for the k-out-of-n system with equal cost
of all tests. This procedure covers the deficiency of

Butterworth's rules.

2.3 Scope of the Research

From the above section, it is noticed that the only

approaches which guarantee an optimum testing sequence are the

recursive procedure by Cohn and Ott [4], the dynamic programming

by Sheskin (1], and the branch and bound by Aly [1].
Capitalizing on Aly's approach, it seems very promising

to formulate the problem as a search tree and to find the
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optimal testing sequence using a branch and bound approach.
Using this approach efficiently could save a lot of work in
comparison with using the two methods previously mentioned
because of the savings in the solution space achieved by
using strong dominance rules instead of finding the optimal
solutions among all possible solutions at each node in the
solution by dynamic programming for instance, as shown in
Figure 2.1 for a four LRUs example which uses many arcs. The
same problem could be formulated as the search tree depicted
in Figure 2.2. However, all the arcs which lead to any state
with only one untested LRU and which resulted from applying
tests that remove the ambigquity of exactly one LRU are
omitted in order to simplify both the network and the tree.

Also, by using a good lower bound at each node, most
of the active nodes could be fathomed and the optimal solution
could be found as fast as possible by using a strong branching
rule,

The efficiency of the solution by using branch-and-
bound approach depends upon the strength of the bounds, the
dominance and the branching rules. Consequently, the main
effort will be directed toward finding the dominance rules
which minimize the number of branches as much as possible,
finding the branching rules which concentrate the search only
in the very promising branches, finding a lower bound at each
node which helps in fathoming the maximum number of nodes, and

constructing a sound and efficient branch-and-bound algorithm.
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CHAPTER 3

A BRANCH AND BOUND APPROACH

In this chapter a branch and bound algorithm is
developed to find the optimal sequence of diagnostic tests
to be executed automatically to isolate the group of modules

which contains the faulty unit.

3.1 Concept of Branch and Bound Techniques

As stated by Lawler and Wood [10], branch and bound
is a method of controlled search of the space of all feasible
solutions. The space of all feasible solutions is repeatedly
partitioned into smaller and smaller subsets, and a lower
bound (in the case of minimization) is calculated for the
value of the objective function over the solutions within the
subsets. If a known feasible solution is available (an upper
bound), then after each partitioning those subsets with a
lower bound exceeding the current upper bound are excluded
fror further consideration. Partitioning continues until a
feasible solution is found such that its cost is not greater
than the lower bound for any subset.

Branch and bound algorithms have two main character-

istics; the branching and bounding characteristics. The

17
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branching characteristic guarantees that an optimal solution
will eventually be obtained. The bounding characteristic
furnishes the possibility of recognizing an optimal solution
prior to complete enumeration.

Therefore, any branch and bound algorithm needs to
define a set of rules for (1) branching from nodes to new
nodes, (2) determining lower bounds for the new nodes, (3)
choosing an intermediate node from which to branch next,

(4) recognizing when a node contains only infeasible or non-
optimal solutions, and (5) recognizing when a final node
contains an optimal solution.

In order to use the branch and bound technique to
find the optimal sequence of tests to be used in detecting
and isolating the malfunctioned unit, the search tree is
constructed as the one in Figure 2.2 with a few modifications.
There is no need for all the nodes in the last level, which
have states including only one untested LRU, since their
status can be found once the search reaches any node with
state of having exactly two untested LRUs regardless of its
level. Consequently, savings can be made in both time and
storage regquired for the scolution. Also, at any node if a
test which does not remove the ambiguity of exactly one unit
(in other words it decreases the number of untested LRUs by more
than one) is applied, the state of this node will be changed to
another two states with more than one level difference between

them and the given node. Therefore, a dummy or fictitious
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node will be added after the given node in order to keep track
of the two new branches since the expected cost of applying this

test should include the expected costs of both branches.

The modified search tree which is depicted in Figure
3.1 represents a four LRUs example (n = 4), with a maximum
number of levels of (n - 1). At any state S with n(S) remaining

untested LRUs there are (27(S)-1

- 1) branches emanating from
this state. Each branch represents a set of possible tests
which could be used to remove the same ambiguity, and conse-
quently leads to the same new states at another level down the
tree. Since our objective is to minimize the expected cost of
search tests, always, the test with the minimum cost among all
possible tests at every branch will be considered.

In order to save in the storage and time requirment,
which are the main problems in this kind of combinatorial
problem, the nodes (which represents the states) of the tree
will not be generated in advance, but they will be generated
one by one as the algorithm proceeds. This will not only save
the number of nodes but also the size of information to be
stored at each node. Once a feasible solution is found, all
the remaining branches which are emanated from all active nodes
should be checked. At the last generated node, all the previous
branches and nodes which emanated from this node and which are

already examined, fathomed, or had a feasible solution (which

is to be stored) are to be cancelled and the search is to

proceed in a new active branch. By repeating this procedure,




o > C e e dites a4 g POTPNIAN

]N! — , ——n e
+

o
o~
a1dwexd sOUTI-y © 210] 8315 YOiIelg POTITPOWN ¥ T1°¢ aanbtd
Aw.@. @ G @ @DEEHETD) @D@D®D @D@DUD@D @D TW 70,
- ~ - -~ - -~
| ARG @ Qod D
070% oeww A o o0
< 2 < 1
‘ NOON.& o © 000'%

. 1
S

— . Ly SR o 2l e T v pw IS A N Iy
. . T F gt YR L < o

L
Sde e L ..




‘el

1.

e A
[ PO

an

21

the number of nodes stored at any time is minimum and relatively

very small.

In the algorithm, the search starts by finding a
feasible solution as quickly as possible by moving directly down
the tree using the branching rules from the initial node at the
first level to another node in a successive level, to a third
one in a successive level, etc., until finding a state of having
only two untested LRUs. Proceed upward in the same branches in
order to update the values of the lower bounds at the fictitious
nodes and, consequently, find the actual values of the lower
bounds in the other branches of all fictitious nodes. This
procedure guarantees finding a fast and good feasible solution
which enables us to fathom efficiently many nodes, especially
since the search proceeds in the most promising branch at each
node according to the branching rules after applying the
dominance rules, which eliminates as many branches as possible.

After finding a feasible solution, the algorithm
proceeds by moving to the last created node and starting
branching and bounding as usual until fathoming all nodes
emanating from it; then going to the second from the last
created node and so on until fathoming the first node in the
tree. In this case the last solution cor .. sponding to the last

value of the upper bound is optimal.

i
{
|
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3.2 Upper and Lower Bounds

3.2.1 Upper Bound at the First Node

On a minimization problem—1like the problem presented
here—developing a reasonable initial upper bound on the
objective function value is important because it might help in
fathoming nodes before even computing the first objective
function value associated with a feasible search procedure
generated by the tree. 1In this case the objective function
value associated with any feasible procedure may serve as an
upper bound.

Since the maximum number of tests required to find
the malfunctioned unit among n LRUs is (n ~ 1), using the
(n - 1) tests that have the minimum costs among all tests,
which isolate only one LRU at the initial node, is sufficient
to find the malfunctioned unit and consequently presents a
feasible search scheme.

Noting that the cost of the tests in the objective
function should be multiplied by the probabilities of the
untested LRU's at each node in order to find the expected cost,
neglecting the values of these probabilities (which are less
than one), and taking into consideration the expected cost of
the secondary isolation of all n LRUs, results in a value of a

possible and reasonable upper bound.

This initial upper bound, U, is defined as
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n
£ C. + I P. + E. (3.1)

cost of test k.

prior probability of failure of LRUi.

expected cost for secondary isolation of LRUi.
set of tests with the minimum (n -~ 1) costs
among the n possible tests which isolate only
one LRU if they are used at the first node (i.e.,
tests with (n - 1) zeros and only a single one
in the n bits such as tests T1000" TOlOO’ TOOlO’

T0001 in case of having only four LRUs).

3.2.2 A Lower Bound for Each Node

At each node in the tree a lower bound is computed based

on the actual value of the expected costs of all tests used

prior to reaching this node, as well as an estimate of the

minimum expected cost of tests required to remove the ambiguity

of all the remaining untested LRUs at this node.

At any node N(é) applying test Tk will generate two

nodes N(S) and N(S) corresponding to states S(§,Tk) and §(§,Tk)

respectively which arises two cases according to the number of

remaining untested LRUs at each node.

—_— eq - I W e RS
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Case 1 Min([n(S), n(5)] =1

In this case, there is no meaning of generating the
node corresponding to the state of having only one remaining
untested LRU and, consequently, there is only one branch to
be searched, assuming it is the one starting with node N(S).
Since the remaining untested LRUs at this node are n(S)
therefore, at most (n(S) - 1) tests could be used to remcve
their ambiguity, and the cost of these tests should be multi-
plied by the sum of the probabilities of the untested LRUs at
each of the (n(S) - 1) nodes.

Since 2 < n(S) < n, then the minimum possible sum of
probabilities to be multiplied by any cost is the sum of the
minimum two probabilities of the remaining n(S) LRUs.

Let I(S) be the set of indices of the n(S) remaining
untested LRUs at node N(S), the prior probabilities 51,52,...,

ﬁn(S) of these LRUs are arranged in an ascending order such that

®1
the minimum expected cost of tests required to remove the

< -p2"'<§n(s)’ and C(S) is defined as a lower bound of

ambiguity of the n(S) untested LRUs at node N(S), then

c(s) = (p; + pPy) jgt cj
n-1
where tn = set of the n(S) tests with the minimum n(S) costs
among all possible tests which could be used at this node.
Let T(§,S) be the set of all tests which could be used

to reach the state of node N(S) from the state of node N(g)
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' and C(§,S) be the minimum expected cost of the test required

to reach the state of node N(S) from that of node N(§), then

. c(s,s). = min(C, ] -+ I Py
keT(é,S) ieI (8)

Based on the above discussion, a lower bound L (S)

at node N(S) representing state S(§,Tk) could be found by

computing the expression

L(S) = L(S) - C(§8) + C(S) + C(8,8) (3.2)

If N(S) is the first node in the tree with state S

( having n untested LRUs then,

L(S) = C(S) + p. * E, (3.3)

nes

Case 2 Min(n(S),n(S)] > 1

In this case, applying test Tk at node N(S) will
generate two noaes which should be both searched. 1Instead, a

fictitious node N(§f) corresponding to a dummy state S

. f

:f will be assumed to have resulted from applying test T, at

;; N(S) and will be inserted after node N(S). Then, the two

Ji nodes will be emanated from N(§f) and generate the two

’} branches b(§f,S) and b(§f,§) as shown in Figure 3.2.

o Finding the lower bound at any fictitious node N(gf)

T% is slightly different from finding it at any other node, since

& it should include C(S) if the search is moving downward in %

) 3 { f
4
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pranch b(éf,é),and includes C(8) if the search is moving
downward in branch b(gf,S). Arbitrary in the algorithm the
search will move first to the node with the maximum number
of reméining untested LRUs among nodes N(S) and N(S). Even
though both branches should be searched, this procedure will
minimize backtracking because it increases the possibility of
fathoming more branches. So, if n(S) > n(S) the search will
move downward in branch b(éf,S). Consequently, the lower
bound at the fictitious node N(gf) could be computed using the
expression

L(§,) = L(8) - c(8) + c(§) + C(§,S,) (3.4)

Since there are no tests required to change the state

of node N(éf) to the states of nodes N(S) and N(S), then

C(§f), C(§f,S), and c(§f,§) are all equal to zero.

A final word about the lower bounds. If the search
reaches node N(S) where n(S) = 2, then a feasible solution
could be obtained. Let C be the expected cost of this
feasible test sequence, then

C = L(S) - C(S) + min[Ej] " Ipy (3.5)

JET(S) 1ieI(S)
C is the value of the actual expected cost of a

feasible solution unless it results from any branch emanated

from a fictitious node, in this case it is only a lower bound
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of the actual value of the ekpected cost of a feasible

solution. To find the actual value the search should go

upward the tree to the fictitious node and update its lower
bound by substituting the last value of C instead of C(S) in
equation 3.4. Then, moving downward in the other branch
b(gf,fk), as in Figure 3.2, until finding a node with a state
having only two untested LRUs. At this moment computing C

using equation 3.5 results in the value of the actual expected
cost of a feasible solution because in this case the cost of

the two branches (emanated from a fictitious node) has been taken

into consideration.

3.3 The Branching Rule

The branching rule is the criterion used at each node

n(s)-1_ 1)

N(S) to proceed the search in one of the possible (2
branches where each branch represents a set of tests which
could be used to change the state of ambiguity at this node

to another state in another level down the tree. The more
effective the branching rules are, the faster a feasible
solution could be reached and consequently the less the time
and speed required.

The branching rule used in the branch and bound
algorithm was proposed by Johnson, et al. [ 9] as a method for
constructing a good but not necessarily optimum sequence of
tests that can be executed by an automatic diagnostic. Using

this rule will improve the efficiency of the branch and bound

algorithm because it will guarantee finding a good feasible
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solution as fast as possible.

This rule uses the information-gain figure-of-merit,
Fk' which is the ratio of the ambiguity removed by a test Tk
k* This rule is defined as follows:
At any node N(g) with a state having n(g) untested

s to the test cost, C

LRUs, by applying test Tk’ which has a cost Ek' either state
S(§,Tk) of node N(S) could be reached if the test passes, or

state §(§,§k) of node N(8) will be reached if it fails. Then,

Fy

- [p log, o + (1 - p) log, (1 - o)]/Ek (3.6)

z p./ ¥ . P.
je1(s) I jer(s)

where o]

: Rank all tests at node N(§) in a decreasing order

according to the values of their F. According to this order

the tests will be chosen at this node.

3.4 The Dominance Rules

Dominance rules could play a very important part in

determining the size of the solution space and consequently

-t the size of the search tree, especially if it works at the

root of the tree. Therefore, attention should be made in

order to come up with strong dominance rules.
At any node N(§) by applying test Tk two nodes could

be reached; either node of state S(§,Tk) or node of state

.oa oo

§(§,Tk) with n(S) and n(§) remaining untested LRUs respectively.

Divide the set of all possible tests T(S) at node N(é) into

.

two subsets 1, and T where;

- AN
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T = [T, |T, € T(S), n(S) # n(§))
and

T = [T |7, € T(S), n(s) = n(§)]

Assume further that state S* is the state with the

minimum number of remaining untested LRUs among states S and

g.
L opy Lif n(8) # n(§)
JeI(S*)

Let p(T)) =
min[ 2 py, I pj ] ,if n(S) = n (8)

JeI(S) jeI(S)

The following theorems explain the dominance rules
which will be used in the algorithm. The detailed structural

proofs of all these theorems are presented in Appendix A.

Theorem 3.4.1

At any node N(S), any branch generated by a test Tk
such that Tk € T dominates any other branch generated by a

test Tm such that Tm e 1t 1if:

Ck = min[Ci]
ieT(S)

and C, <C_ - po(T

Theorem 3.4.2

At any node N(S), any branch gencrated by test Ty such

that Tk e T dominates any other branch generated by test Tm

such that T_ ¢ T if

[P




Corollary 3.4.1

min [Ei]

Theorem 3.4.2 could also be applied in the oppcsite

case, i.e., any branch generated by test ’rk

dominates any other branch generated by a test Tm such that Tmer

Theorem 3.4.3

such that T, eT

min [65}

At any node N(S) with a state having at most four

remaining untested LRUs, if test Tk such that Tk.e T has the
minimum cost among all tests which can be used at N(S), then
the branch generated by Ty dominates all branches which are

generated by any other test T, such that T_ e T.

A summary of the dominance rules is presented in
Table 3.1 which summarizes the condition required to make
a branch generated by test Tk at node N(S) dominates another

branch generated by test T , where Ek

min (C.).

S
Le
LS
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TABLE 3.1
DOMINANCE RULES
T -
m Th €T T €T
Ty
T, € C . = .
Ck < Cm D(Tk) Ck < Cm D(Tk)
If n(S) < 4
T ¢ C < O . no other condition
Cx < Cm p(Tk) if required
If n(S) > 4
no general rule
is founded

3.5 The Branch and Bound Algorithm

In this section the complete branch and bound algo-

rithm for determining the sequence of diagnostic tests to be

executed automatically by the BIT to isolate the group of

modules (LRUs) which contains the faulty unit is given.

The input parameters are:

n

o

M T 3

"

Total number of LRUs

Set of all tests which could be used

Prior probability of failure of LRUi, i=1,2,¢c.,n
Expected cost for secondary isolation of the

failed unit in LRU,

Cost associated with test Tk

i - - N TR OUTTCTTY [T 7T

e

e




33

values of the objective function are:

UB = Upper bound on expected total cost
L(S) = Lower bound on expected total cost at state S
C = Expected cost of a feasible test sequence

The parameters for creating, fathoming ncdes and

branching are:

ND = Current node number
n* = Counter for nodes created
S(§,Tk) = State S generated by applying test T, at

~

previous state §

n(S) = Number of the remaining untested LRUs at node S
5 N(S) = Node corresponding to state S
T(S} = Set of the 2n(S)—1-_l possible tests at state S
I(S) = Set of the n(S) remaining untested LRUs at
state S
C(s) = Lower bound of the minimum expected cost of

tests required to remove the ambiguity of the
n(S) untested LRUs at state S

Y(S) = Set of the remaining feasible branches after
applying the dominance rules at node N(S)
{each branch could be generated by at least
one test).

2{8) = Level of node N(S)

Step 0 1Initialize the input parameter, let S be the initial

state of node N(S), n(S) = n, 2(S) =1, ND = 1, and

n* = 1. Compute UB using equation 3.1 and L(S) using

.' B 0
a~d oot

e
an

equation 3.3.

-
[N

Al ded
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Step 1 Apply a stopping test based on the secondary isolation
n n
costs. If C(8) + I P; " E; 2

I E. . Use the
. i
i=] i=

1

secondary isolation for all LRUs, stop. Otherwise,
go to 2.

Step 2 Use the dominance rules to find Y(S).

Step 3 Find the information-gain figure-of-merit Fy for each

branch or test T, € Y(S) using equation 3.6, Rank

k
them in a decreasing order according to the values of
their F.

Step 4 Start branching using branch of test Tk with the
maximum F among all tests in Y(S) and remove this
branch (test) from Y(S).

Step 5 Generate the new two possible nodes by using Tk at
node S, denote them N(S,) and N(S,). Find n(s;) and
n(s,).

Step 6 If min [n(Sl), n(Sz)] = 1, let node number n* + 1 be
the node with max [n(Sl), n(Sz)], go to 7. Otherwise,
let node number n* + 1 be a fictitious node, go to 8.

Step 7 Let state S be the state of node number n* + 1, let
ND = n* + 1, 2(8) = 2(S) + 1, go to 11.

Step 8 Let state S be the state of node number n* + 1, let

]

ND = n* + 1, 2(8) L(8) + 1.

Find L(S) of the fictitious node N(S) using equation 3.4.
Step 9 1If n(Sz) > n(sl), let node number ND + 1 be N(Sl),

and node number ND + 2 be N(SZ)' Otherwise, let node

number ND + 1 be N(Sz) and node number ND + 2 be N(Sl).

ARE At o
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Step

Step

Step

10

11

12

13

14

15

16

17

19

P e ‘

35

Q(Sl) = 2(8) + 1 and ¢(5,) = 2(S) + 1, let S be the

state of node number ND + 2. Let n* = ND + 2.

Compute L(S) using equation 3.2,

Apply the secondary isolation stopping test. If

c(s) + I Py - Ei > I Ei . Go to 15. Other-
ieI(S) ieI(S)

wise, go to 13.

If L(S) > UB, fathom node N(S). Go to 21. Other-

wise, generate T(S), go to 14,

If n(S) = 2, compute C using equation 3.5, go to 16.

Otherwise, go to 2.

Compute C = L(S8) = C(s) - & P; ° Ej+ I Ej,
ieI(8S) ieI(8S)

Y(S) is empty.

If C > UB, fathom node N(S), go to 21. Otherwise,
go to 17.

If 2(S) = 2, the last solution is feasible. Let

UB = C, and state S be the state of node number n*%*,
go to 22, Otherwise, go to 18.

If node N(S) is branched directly from a fictitious
node, go to 19. Otherwise, go upward the same
branch to the next node, let S be the state of this
node, with number ND.

If node number ND-1 is fictitious, let S be its state
and let ND = ND-1, go to 17. Otherwise, let S be

the state of node number ND-2 and let ND = ND-2, go

to 20.
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Step 20

Step 21

Step 22
Step 23
Step 24

Step 25

Step 26

Step 27

36

Update the lower bound at the fictitious node N(S)

by substituting the last value of C instead of

C(S) in equation 3.4. Let S be state of node

number ND + 1, let ND = ND+ 1. Compute L(S), go to

12.

Let ND be the number of the node N(S). 1If N(S) is

branched from a fictitious node, fathom also node

number ND-1, and let S be the state of node number

(ND-2) and let its number be ND. Otherwise, let §

be the state of node number (ND-1l) and let its .

number be ND.

If 2(8) = 1, go to 30. Otherwise go to 23.
If 2(S) = 2, go to 28. Otherwise go to 24.
If N(S) is fictitious, or n(S) = 2, let state S be

the state of node number ND-1, and its number is

ND, go to 22. Otherwise go to 25.

If Y(S) is empty, go to 26. Otherwise go to 31.

If N(S) is branched from a fictitious node, go to 27.
Otherwise, let state S be the state of node number

ND-1 and let its number be ND, go to 22.

If the lower bound at the fictitious node has been

previously updated, let state S be state of node ;
number ND-1 and let its number be ND, go to 22,
Otherwise, go upward this branch to the next node 4

let its state be S and its number ND, go to 22,

T T TN I e e e

RONI-7 % TR S S
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Step 28 If N(S) is fictitious, or n(S) = 2. Let S be the
initial state, go to 3-. Otherwise go to 29.

Step 29 If Y(S) is empty. Let S be the initial state, go to

. 30. Otherwise go to 31.

Step 30 If Y(S) is empty, stop, go to 32. Otherwise go to
31.

Step 31 Let n* be the number of node N(S), go to 4.

Step 32 The optimal sequence of tests is the one associated

with the last value of the upper bound UB.

3.6 Verification of the Algorithm

The algorithm of Section 3.5 was coded in FORTRAN IV.
The code was verified using the example problem used in [11]
and shown in Table 1.1.

The search tree used in solving this problem by branch
and bound algorithm is presented in Figure 3.3. The same
optimal sequence of tests has been obtained. Either sequence
and T and T

of tests T or T

1000’ T1100’ 0010 1000’ Y0010’ 1100

produced the same optimal solution.

From the tree presented in Figure 3.3 it is noticed
that the dominance rules and lower bounds worked efficiently
to reduce the size of the tree to include only seven nodes
compared with the original possible tree for four LRUs, which
has 23 nodes as well as the dynamic programming network which

has 16 nodes.
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It is noticed, also that even though the total number
of nodes generated during the execution of the algorithm was
seven, the maximum number of nodes stored at any time was
only t%ree, which is relatively small and reasonable. Also,
the first feasible solution happened to be the optimal solution
which shows the strength of the branching rules and its
effectiveness in helping fathoming the remaining active nodes.

Thus, in a simple test example, the efficiency of the

algorithm was verified.

3.7 The Heuristic Algorithm

The branch and bound algorithm explained in section
3.5 finds efficiently the optimal solution. However, the size
of the problems which could be solved by this algorithm is
relatively small because of the storage burden and time
requirement, which is inherented in most combinatorial
problems.

This heuristic algorithm is simply the same branch
and bound algorithm explained in the previous section with
two more stopping tests which stop the search for optimality
by stopping the search either directly after finding the
second feasible solution or after generating a limited number
of nodes based on the maximum number of nodes required to

find a feasible solution. By experiment it was found that

the best results happened when the search stopped after
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generating a number of nodes equals to fifteen times the
maximum number of nodes required to find a feasible solution.
These tests were developed from the computational results of
the br;nch and bound algorithm which showed that most of the
search time was consumed in proving optimality not in finding
the optimal solution itself.

The stopping test based on the second feasible solution
can be added in step 17 in the branch and bound algorithm. b
While the stopping test based on the total number of nodes l
could be added before step 1ll.

The value of the objective function obtained by the

heuristic algorithm was found to be on the average, 99.244%

or more of the values of the optimal solution for all test |

problems. The details of the computational experience are

presented in Chapter 4.
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CHAPTER 4
COMPUTATIONAL RESULTS

In this chapter the computational experience with
both the branch and bound and heuristic algorithms presented
in Chapter 3 is demonstrated and analyzed. The test problems
were randomly generated from uniform distribution. All
probabilities of failure of the n LRUs were generated from a
uniform (0-1) distribution. The costs of all tests were generated
from a uniform (1-20), while the expected costs for secondary
isolation of all LRUs were generated from a uniform (1-10)
distribution. All problems were run on the University of Oklahoma
IBM 370/158J computer. The results are summarized in Table 4.1.
As in all combinatorial problems, the reguired compu-
tational time is a function of the size of the problem as well
as the number of active nodes. As depicted in Figure 4,1 the
case of n > 8 LRUs is the critical case where the time starts
increasing exponentionally from 10.6 seconds in case of n = 7
to 160.345 seconds in case of n = 8.
Table 4.2 displays a comparison between the branch and
bound algorithm and the heuristic one. The savings in compu-
tation time by using the heuristic algorithm is obvious,

especially when the number of LRUs increases. However, the

41
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Figure 4.1. A plot of computational times for selected problems




. tge of difference in the
Average CPU Time zgsegfb;lme objective function between|
Sec using the optimal and heuristic
LRU B&B Heuristic heuristic Average Maximum
4 .331 .318 3.86% .4418% 3.91%
5 .526 .426 18.95% .756% 7.25%
6 1.765 1.032 42.17% .349% 3.37%
7 10.6 6.113 42.45% .666% 3.4%
8 160.345 23.579 85.3% .0124% .0749%
‘ 9 | 1253.715| 74.137 94.00% 0 0
i 10 [>3600 280.135 >92.2% optimal solution
i is not known

A COMPARISON BETWEEN THE RESULTS OF BRANCH AND

TABLE 4.2

BOUND AND THE HEURISTIC ALGORITHMS

44

sacrifice in the optimal value of the objective function is

less than 7.25% of the optimal, and on the average it is less

=£ than 0.756%. Also, Figure 4.2 shows that the heuristic
~ algorithm reached the optimal solution in more thar 82% of the
f} problems tested which shows the effectiveness of this
3 algorithm.
’€ Table 4.3 shows a comparison between the branch and
f‘f bound algorithm and the dynamic programming approach used in [11].
; This comparison is based on the maximum number of nodes created by

d
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i
! TABLE 4.3
A COMPARISON BETWEEN THE BRANCH AND BOUND ;
AND DYNAMIC PROGRAMMING ALGORITHMS 4
- 1
™ LRU
Mz . H
ni. o: 3 4 5 6 7 8 9
nodes
created
Branch and 4
Bound 4 26 113 432 666 2812 1959 !
Dynamic )
Programming 12 77 39 1767 7560 31369 128010

using both algorithms. The comparison indicated a dramatic

difference in the number of nodes created especially for

n > 7 LRUs. A comparison in the computation time would have
been rather more important. However, no computational results
were reported in case of using dynamic programming, only the

upper bound on the number of states generated by dynamic

programming.




CHAPTER 5

SUMMARY AND CONCLUSIONS

5.1 Summary

Two approaches to the cost effective design of fault

isolation procedures were investigated. The problem was
formulated as a search tree in which the optimal search
procedure could be found using a branch and bound approach.
Dominance and branching rules were developed, then a branch and

bound algorithm was presented.

Having studied the computational results, another
heuristic algorithm was developed thch proved to be efficient
and fast. An example problem was solved to illustrate the
efficiency of the branch and bound algorithm and was compared i
with a previous dynamic programming algorithm.

Computational results indicated that the heuristic
algorithm was faster than the branch and bound one with a very
- slim sacrifice in optimality.

Computational results were reported and compared to the

i available results of other algorithms.

5.2 Conclusions

Several conclusions can be drawn from this research

[ : :
*1 regarding the consideration of new approaches for fault isolation

.
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problems. They are:

1. The branch and bound approach could be used
successfully to tackle the problem of designing a cost
effective fault isolation procedure. Because of the branching

R and dominance rules, many of the nonoptimal solutions would be

eliminated early in the solution procedure which could
efficiently reduce the size of the required search tree, as
well as the time and storage needed to find the optimal

solution.

2. The branch and bound algorithm proved to be more
efficient than the dynamic programming scheme which has been
used in previous works to seek optimal procedures.

3. The heuristic algorithm presented in section 3.7
proved to be a good compromise between the ultimate goal of

' optimality and the problem of time requirement to achieve this
7 goal. This algorithm has the advantage of finding a near
optimal solution in a very short time compared to other
methods.
4. Even though the size of problems solved efficiently

by the two algorithms are limited to nine LRUs, this size is

“ still greater than any problem reported to be solved in any
-é& previous work. R
}é :‘
N 5.3 Future Work ;1
; Recommendations for further research in the cost k
”; effective design of fault isolation procedures would be: f
3 {
& ,
- ,
X _.
i "

e i At Suoati ok b ATk

.

oY



1. Developing a technique to minimize and control
the number of possible tests which could be used in the
search because of the dramatic increase of the possible
number of tests with the increase of LRUs.

2. More investigation in developing branching and
dominance rules and more work in designing test procedures
using branch and bound approaches.

3. Investigating how to partition the equipment into
optimum groups of modules.

4. Considering the problem without neglecting the
possibility of multiple failures of two or more LRUs at the
same time.

5. Studying the effect of imperfect information on
the optimum test procedures and how to modify the solution
according to that (sensitivity analysis).

6. Determining an optimum procedure which minimizes
the expected cost of secondary isolation to locate the single
failed unit within the group of LRUs identified by the BIT

primary diagnostic.

CTwwIT - e -
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& APPENDIX A

DOMINANCE RULES THEOREMS

The proofs of all theorems which have been used to

determine the dominance rules in Section 3.4 are presented

here.

in order to simplify the proofs, the cost Ek of a

test Tk which has 1's in positions i,j,...,2 will also be

identified as C. . .
t 1,],-..,2

Theorem 3.4.1

At any node N(S), any branch generated by a test Tk

such that Ty €71 dominates any other branch generated by a

test T such that T, € T if:

fﬂ Ck = mln[Ci]
ieT(8S)
5
: and Cx <€, ° P(TY)
|
. 3 Proof
o ‘1
-3 Refervring to Figure A.l1 and Figure A.2 which represent
4
k| two branches from the search tree of a problem of 5 LRUs, both

L Y \ }
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branches are emanated from the first node and by using tests

belong to set 1. All tests which could be used at any branch

are presented in Table A.l. ;

: " Let the cost of branch by (S Sg) which pass through

o’sll
nodes N(So), N(Sl) and N(SS) be Cbl(so,sl,ss), and let the
cost of branch bZ(SO’SG’S7’Slo) which pass through nodes N(So),

N(SG)’ N(S7), N(le) be Cbz(SO’SG'S7'SIO)' then,

Cbl(so'sl'ss) = Cy 5t (Pg*Pg) * minlCg,CysCy 4sC3 4rCy 5/Cy 4o

Cy,5:C3, 51+ (py+py*py) - min(Cy,Cy 4.Cy 3.Cy gl+

(Py*P3) +gmin(Cy 5,C5:C3.Cy 4:Cy,5:C1,3:C3, 4
C3'5] + iilpi © E..
l and
: Cb2(80,56,87,slo) = Cl+(p2+p3+p4+p5) . min[Cl'z,CZ] + (p3+p4+p5)
' . min[Cz,3,Cl'3,C3,C4’5]+(p4+p5) . ?i“[CS'
€47€1,4:3,4°C1,57%2,47C2,57C3,51* 2 Py 7 Ey-

Branch bl(So,Sl,SS) generated by test T00011 dominates branch

b2(so'ss's7'slo) generated by test TlOOOO if |
" C4'5 + (pl+p2+p3) . mln[Cl,...] + (p2+p3) y mln[Cl'z,Cz,...] ;
R < €y + (Py*tpy+p +pg)  min(Cy ,,Cyl + (P3+p,+pg) ° min(Cy 5/...] E
= But if C = min (C.] 3
; 4,5 ieT(Sy) 1 L
&
" 5 1
K and since L p; = 1, therefore ... i
» j
s X
8 | !
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branch bl(so’sl'SS) dominates branch b2(50’56’57'slo) if

= (Pg*Pg)Cy 2 (Py*Rg) T minlCy 5/Col = (Py*Py)Cy s

i,e. (p4+p5)Cl > (pl+p2)c4’5 - (p4+p5) . min[Cl'z,Czl

which could be satisfied if C‘:"5 < (p4+p5)C1.

This proof is valid even if the cost of branches :
b3(SO'Sl’S3) and b4(So,Sl,S4) are less than that of bl(SO,
3 Sl,Ss) because in this case they dominate branch bl(So,Sl,Ss) ‘J
and consequently dominate branch bZ(SO’SG'S7’slo)' However, J
it is not the same for other branches bS(SO'SG'S7’Slz) and

bZ(SO’SG’S7’SlO)' Therefore, it should be proved that branch
l’SS) dominates branch bZ(SO'S6’S7’SlO) and any other

! branch generated by test TlOOOO’ whatever the branch emanating

E from node N(SG) with minimum cost is.

Case 1 If branch bs(SO,S6,S7,Slz) is the optimal branch

generated by test T10000

Let the cost of branch bS(SO’SG’S7’slz) be Cb (SO’SG’

5
S7:815)

:5 Cb5(50’56'57’812) = C) + (Py+P3+P,*+pg) * minlCy ,,Ch) + (py+p,+
}4 Ps) “Min{CsiCy,5:C1,5:C3, 4] * (P3*R) -Min(Cy, :
}@ €47€1,3:€1,47%2,3:%2,47C3,57C4, 51 * I P37 Eye ‘
g o e Cus < TG L
4 1
‘ti then branch bl(So,Sl,Ss) dominates branch b5(80,56,87,812) if ;
& Ca,5 * (Pg*Pg) « minlCq,CyuCy 4iCy 40Cy 5:C5 4:Cy,5:C3,51 * j
¥ 3
3 ;
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(pl+p2+p3) . mln[cl,Cl'4,C2'3,Cl'5] + (p2+p3) . mln[Cllz,Cz,C3,
C2,47C2,5'C1,37C3,4:C3,5) S C1 * (Py*P3+P4*Pg) - min(C, ,,Cyl
or - (pPg*Pg)Cy 2 = (Py¥Py¥Pg)Cy 5 + (Pytpg) © min(Cy ,.C)l
+ Py ° mln[CS, ool
+ > +p.+ - + * mi cee
or (py*+pPglCy 2 (Py+P, 95)04'5 (py*pPg) mln[Cllz, ]
- Py - mln[CS, S |
which could be satisfied if
Cq,5 < (Pg*P5)Cy
under the condition that
C4’5 = mln[Ci]
ieT(So)
By the same procedure it could be proved that branch
bl(So,Sl,Ss) dominates branch b6(30'56's7'sll) and any other
branch generated by test T and a test Tk such that ket at

10000
node 86.

Case 2 If branch b7(so,s Sg) is the optimal branch

6'5g
generated by T10000

Let the cost of branch b7(So,86,S8,Sg) be Cb7(SO'SG'SS'59)

Cb7(50'ss'sa'59) = C1 + (p2+p3+P4+p5) * min [C2'4,C3'5] +

(p2+p4) . min[C4’5,...] + (p3+p5) « min

[C4’51---]

So if C = min [Ei]

ieT(So)

4,5
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.« branch bl(so,sl,ss) dominates branch b7(50'ss'se'89)

if - (P4+P5)cl < - pl C4'5

| v

i.e. .(p4+p5)Cl Py C4,5

which could be satisfied if
Cq,5 < (P4+P5)Cy
Therefore, in any event the branch generated by T00011

such that T € T dominates any other branch which is

00011
generated by T10000 such that T10000 e 1 if

C = min [C:]
4,5 ieT (S }
0
and  C, 5 2 Cp " P(Thpp13)

Theorem 3.4.2

At any node N(S), any branch generated by test Tk such
that Tk € 1 dominates any other branch generated by test Tm

such that T_ e T if

Ek = @in [Ei
ieT(S)
and Ck < Cm . D(Tk)
Proof

Referring to Figures A.3 and A.4 which represent two
branches in a search tree of problems having 6-LRUs, the first
branch in Figure A.3 is generated by T100000 where T100000 € T
and the second branch in Figure A.4 is generated by T111000

where T111000 € T. All tests which could be used at any branch




S

60

sIe9S ¥ £°VY 2xnbtd
a1duexd sny-9 e 103 201%L U S

.w.
b " /7 Ssyn (000110 |
// ] p
]
[ ]

(%s)N

-
.l

— - . Pye ey 2ot L AT 7 B o .~y «n.
-— - . JPRE \ . - m PRIy .0 R . ] : 4 ’ .




61

aTdwexd SOYT-9 © I0FJ 29I YoIeasS ¥ p°VY 9Inbrg

(8s)N

000TTO

Elsyn Clsyn (Mls)n | Ols)n  (®s)n

é 0000TT

oooHHHB




e P —

62

are presented in Table A.2.

Let cost of branch bl(SO'Sl’s3’SS) be Cbl(So,Sl,S3,Ss)

cbl(sofsl's3'ss) = C) + (Py*P3*P *P5+Pg) ° min(Cy 3.Cy 5 3]

+ (pPy*tpy) ° min{C2,C3,---,Cl,3'6L+cost of optimal

6
search starting from node N(S3)+ I p; - Ei'
i=1

Let cost of branch bZ(SO’SG'Sa) be cb2(50'56'58)
Cbz(SO'SG’SB) = C1'2,3 + (p1+p2+p3) . mln[Cl, ced] + (p2+p3) .

min[Cz,C3,...,C 6] + cost of optimal search L
: 6 .
starting from node N(S7)+ Ip; - E;.

i=1 1

1,3,

so if ¢ = min[éil }
isT(So)

then branch bl (So,sl,s3,55) which is generated by test T100000 |
where T100000 £ T dominates branch b2 (50'56'88) which is
generated by test Tyy1400 WPere T117000 € T if
C) + (Py+P3#+Py+Pg+Pg) * min (Cy 3. Cy 5 3) S Cp 5,3 %
(P;+P,*+Py) * min [Cy, ...]
or if C; + Cp 5 3 (Py#P3+Py*P+Pg) < Cp 5 3 + (Py#Py+P3)Cy

‘Pl Cl,2,3 < - (P4+P5+P6)Cl

C > +p.+ «+ C

Py C1,2,3 2 (Py*P5*Pg) 1

which is still satisfied if

C, 2P G,2,3
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This proof is valid whatever the optimal branch from
node N(Sl) is because if any other branch dominates branch
_ bl(So,Sl,S3,SS), it will also dominate branch bZ(SO’SG’SB)'
. However, to check the validity of the proof if any other branch
from node N(SG) is optimal, let the cost of branch bB(SO'SG'SQ)

be Cb3 (50’86’39)'

C (80,56,59) = C1,2,3 + (pl+p2+p3) * min [C3’CL2’C34’C3,5’C3,6'

by

Cl'2’6,Cl,2’4,C1,2]+(p1+p2)'mln[Cl,...]+ cost of
6

optimal search starting from node N(S7)+ L pi-Ei.
i=1

so if €; = min(C;]
ieT(SO)
[ »
Then branch bl(so'sl'SB'SS) dominates branch b3(So,
SgiSg) 1f €3 = py C) 5 53 + (pytpy) * min [C3,Cy 5, Cg 4r C3 sy

C3,6'C1,2,6'C1,2,47C1,2,5¢ =--1 £ (Py+P,)Cy + (Py+p,y+p3) - min

[C34Cy 51C3,4:C3,5:C3,6:C1,2,6°C1,2,4C1,2,5)

or - p; Cl 2.3 5~ (p3+p4+5+p6)Cl + p, ° min [C3, ess)

7 r

|v

or Py Cy 5,32 (P3*Py*P5*PgICy - py * min [Cy, ...]

which could be satisfied if
€1 2P C1,2,3
By using the same procedure, it could be concluded

that a branch generated by test T100000 where T100000 € T

dominates any other branch which is generated by test Ty,;400

where T111000 e 1T if

|
L 4
adae?,

R T

® LT
- pe




! C, = min [Ci]
ieT(S,)

and C

A

Cy,2,3 ° ?(T100000’"

Corollary 3.4.1

Theorem 3.4.2 could also be applied in the opposite

case, i.e., any branch generated by test Tk such that Tke?

dominates any other branch generated by a test Tm such that Tmer

if Ck = min [Ci]
ieT(S)

and Ck < Cm . p[Tk]

| Proof

Referring to the proof of theorem 3.4.2, and Figures
3.5 and 3.6

if C1'2’3 < min [Ci]

ieT(So)
Branch bZ(SO’SG'SS) which is generated by test T111000

where T111000 € T dominates branch bl(So,Sl,S3,SS) which is

S generated by test T where T e T if

- 100000
- +D_+ < -
(Py*P5tPg) C) < - P1Cy 5,3

100000

\": or (P4 +P5+pg)Cy 2 p1C1,2,3

1 which could be satisfied if Cl,2,3 < (p4+p5+p6)Cl.
f.% This proof is valid whatever the optimal branch from
“i node N(SG) is. However, to check the validity of the proof
&

if any other branch from node N(Sl) is optimal, let the cost of




branch b4(SO,Sl,Sz,S4) be Cb

4(80,81,52,54). :
1

. mln[Cz,Cllzl + P.

i . mln[C3,

i &1 0

6
Cpy(SgrSysSprS,) = Cp # E D.

2 1 i=3

Cc 3]+[cost of the optimal search
’

1,3'%1,2,3°C2
sgarting from node having the state 000111] +

I p. =
i=1Pi " By
So if Cl,2,3 = min [Ci]
ieT(So)

Branch bz(io'ss'ss’ dominates branch b4(SO,Sl,Sz,S4) ;

lf C1'2'3, + izlpi * min [Cl’ .._] + (p2+p3)  min [Czlcl'zy-] 1
6 6
< + ) . ] C + . * i C . o
< Cl iiz pl min { 2’Cl,2] i£3 Pl min [ 1'2'3I ]
or = (Py*PgtPg)  Cp X - (Py*Py*R3)C) 5 3

(Py+P5+PgICy 2 (P1+P+P3)Cy 5 3
which could be satisfied if
Cy,2,3 S (Pg¥Pg*PgICy
which is still satisfied if
C1,2,3 < ™in [(Py*Py*P3) . (Py¥PstRg)l © €
Therefore, in any event a branch generated by test

T111000 where T111000 £ 17 dominates any branch which is

generated by test T100000 where T100000 e T if
Cl,2,3 = min [Ci]
ieT(So)

and

C1,2,3 2 " P(Ti11000
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{ Theorem 3.4.3

At any node N(S) with a state having at most four
remaining untested LRUs, if test T, such that Tk_e’fhas the
minimuﬁ cost among all tests which can be used at N(S), then
the branch generated by Tk dominates all branches which are

generated by any other test T such that Tm € T.

Proof
With reference to Figure A.5, depicting a search tree ﬁ

for a four LRUs example, all tests which could be used at any

node in this tree are presented in Table A.3
Branches bl(SO'Sl’SZ)' bz(so,53,34), and b3(SO'SS’SG)
emanated from the first node N(SO) by tests T1010" TllOO' T1001

respectively, let the costs of these branches be Cb (SO’SI’SZ)’

1l
' Cb (80,83,54), and Cb (SO’SS’SG) respectively where all the
) 2 3
tests belong to set T
4
Cbl(So,Sl,SZ)= iil Py . Ei + Cl,3 + (p2+p4) mln[C4,C2,C1’4,
Cy,21 * (Py¥P3) » minlCy,Cq,Cy 4.Cy 5l \
;
- Cbz(So,S3,S4) = i§1 Py - E;, + Cl,2 + (pl+p2) . mln[Cl,Cz, ;
\ - i
b {
; C1,3,C1'4] + (p3+p4) . mln[C4,C3,C1’3,C1’4] 1
b ‘, 4 ‘.W
e Cb,(S0:S5r8) = 2 Py Ey + Cp g (PptRy) 1 minlCy Gy
| : C ] ﬂ
3 €1,2:€1,31 + (Pytpy) - minlCy,ChiCy 5:Cy 3 ;
i So, if C1,3 = T;;(éc}], then 3
% | 0 :
]
1
¢
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g T
LS P S

TABLE A.3

1 ' TESTS WHICH COULD BE USED AT NODE S IN THE
i 4-LRUs EXAMPLE

S T(S)
1010 | Typ00° Tooro’ Tioo1ir Tiioo |
0101 1 Tpo01+ Tor00’ Tr001’ T1100 /
1100 1 Ty500¢ Toroo’ Tir010 Ti001 ’
0011 | Th0017 Tooro’ Tro10' Tar001
0110 | Tgp107 Tor00’ Tr100’ Tio10
1001 | Ty4007 Tooo1’ Ti100’ Ti010
LI Ty5007 To100’ Too10’ Tooo1’ Tir00' Tio10/ Tioo01

{
i




’ ¥ e’ L

? Cl,3 = mln[Cl,CZ,C3,C4,C1'2,C4'5] and branch bl(So,Sl,Sz)

i dominates branch b2(So,S3,S4)

if 01’_3 +p, - mm[c4,cz,cl,4,c1,2] + Py mln[C4,C2,Cl'4,C1'2]

? +p min[Cl,C3,C1'4,C1'2] + Py ° min[cl'CB'Cl,4'Cl,2]
< Cl,2 +p, - min[Cl,CZ,C1'3,Cl’4] + P; - min[Cl,Cz,Cl’3,Cl’4]
+ Py ° min[C4,C3,C1,3,C1'4] + Py - min [C4,C3,Cl’3,C1,4]
" or C1 3 + P, ° min[C4,C1,2] + Py min[Cz,C1’2] + P ~min[C3,Cl’2]

[4

+py minlcl,Cl,zli Cl,2 + P, min[Cl,Cl’3] +p; ¢ min[Cz,Cl'3]

+ Py ° min[C4,cl’3] + Py min[c3,C1,3]

or [C < cost < cl,2] < Cl,2

1,3

' which is satisfied only because C; ; = min [Ei]
14

. ieT(SO)

which implies that this is the only condition required to
guarantee that branch bl(So,sl,Sz) dominates branch bz(so,s3,s4).
By the same procedure, it could be proved that branch

bl(SO,Sl,SZ) dominates also branch bB(SO'SS’SG) only if

75 C1,3 = min [Ci]

“ ieT(So)

{4 Branch bl(SO’Sl'SZ) dominates br ' ch ",\SO,SS,SG) if

,% C1,3 + py ° min[c4,cl'4] + Py m1n[C2,C1,4] + Py - mln[C3,Cl'4]

L + Py ° mln[Cl,C1'4] < Cl,4 + P, mln[C3,C1'3] + P mln[Cz,Cl'§
o 2

:i +py mln[C4,Cl,3] + Py ° min [C1'C1,3]

8 |

-
1
q'.
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or if [C1,3 < cost < 01'4] < Cl,4

which is satisfied only because Cl,3 < cost of any other test.
Therefore, the branch which is generated by test
T1010 Qhere Tio010 € T which has the minimum cost at node N(SO)
dominates any other branch generated by tests belong also to
set T.
Eventhough all the dominance rules are proved in
case of having five or six LRUs, they could be considered rea-
sonably as general cases. However, because of the dramatic [

2(n-l) /

increase in the number of possible tests ( - 1) in case

of having more than six LRUs, the proofs in these cases are

omitted here.




x c APPENDIX b
C * % % % % % %X %X % ¥ ¥ ¥ ¥ ¥ ¥ £ % ¥ X % X ¥ 3 %x ¥ % ¥ X ¥ ¥ % % ¢ R @
' c MAIN PRCOGWRAHM
C ®* % ¥ %X ¥ %X % ¥ ¥ % & % ¥ ¥ ¥ % ¥ ¥ ¥ ¥ ¥ ¥ % » ¥ % ¥ %X % ¥ % ¥ ¥ % =
C PURPLSE
C Tertld PRUGKAM USES A BRRANCH AND BUOUND ALGORITHE TOC FINO THE JPTlvAaL
C SEQUENCL WF TESTS Rt UGUIRED TOU LOCATE A MALFUNCTY LUKED UNIT IN A
Cc SYLTEM U N LAU'S
t
C INPUT
C CUNTKUL CAKDS
C DATA CARDS
C CUNTROL CARLS (A)
C COL UMNS
C 1-5 eses oMo oee s NUMBER OF LRU®S
C o-17 seacoesMoase o NUMBLK OF TESTS
C COUNTROUL CAROS (Bleese{ ONC PLK EACHH TLCST)
C 1-19 IXX{1oloJ)aeoTEST | DLSCKIBED BY THUC N BITS (EACH HITY 1S
€ KREPRLSENTLD 3Y J )
C DATA CARODS {(A)esea?ZF 10,7
C CuULUMNKS
C 1210 s 0ecs000e96i=7Ceselll) +CCST OF TEST I
C DATA (CARDS (R)ees7F 10,7
C CUL UMNS
C L=-10 s000ee003301-7000sP(J)eeePRUCBABLILITY CF FAILURE OF LRU J

At

I o i s ~Aei e e
almi, s

ey

e
T m— . e -
- T e e e oo

s o S B e el N

i
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e

C DATA CARDS (Cleee71l1l10
C COLUMNS
C 1-10 ve000cveeesOl=TloeoMH(J) oeeSECUNVARY I SULATIUN TUST CF LKL
C PAKAMETEKS
C N=NUMBER OF LekeUe
C M=NUMBER:OF TESTS
C P(JI)=PRUBABIL1ITY OF FAILURE UF LeReUse J
C MH(J)=SECONVDAKY ISOLAYICN COOY
C C(1)=CLST OF TEST 1
C 1IS= NOUVE NUMBER
C IY(1SeJ)=STATE UF NULDE IS
C IXX(15¢19J)= TEST LF MINIMUM COST AT BRANCH I FK(LM NUDE 1S
C IXXY(ISeleJ)=COUMPLENMENT COF TEST IxX(1SsleJd)
C CA(IS»I)=0ST GF TEST GF MINIMUM CuST AT QHKANCH 1 FRLM wpotb IS
C L(IS)=LEVEL OF NCODL IS
C 1S5(1S)=PREVIOUS NODE TCL NCDE IS
C K{IS)= NUMBER LUF UNTESTED LehoUe?S AT NODE IS
C ALL(1S)=LOwWER BOUND AT NODL IS
C ID(IS)eeeesIF ID(IS)=]1 aeeNODE IS 1S5 DUMAY
C INUDEX(1ISe1)=1 esese e oBRANCH [ FROM NULOE IS COULL bE USYD
C INSEX(IS,1)=D seees e o BRANCH I FRLM NUDE I3 CLULD NuUT beo USED
C F(15e¢1)=VALUE OUF FIGUKL OF MERIT TO BE USCD INBFANCHING RULES FOR
C BRANCH 1 AT NODE IS
C JUPD(IS)=1 see IFTHE DUMMY NODE IS IS UPOATLDsZERC LTHLRWISE
DI MENS 1 OUN LYS1(9)eCRA(255),LYS2(3)sL(12) eJduPI(4)
COMMUNZABC/ZIXX (11 425549)
COMMON/BBC/CA(11,255)
CCMMUN/ZOEF/ZIXX11(11255,9)
CUMMULNZLMNZIY (11 49)
CUMMUN/ZXY Z/7 155(11)
COMMUN/JUVA/F(11+255)
COMMON/ZGHTI/Z&{1L)o 1D 11)
CUMMUN/ZENT/K(11)
CUMMUON/Z UHK/ZP(9)
COMMUN/BAB/ INDEX(114255)
CUMMUN/KALZALB(11)
CUMMON/Z/MAGZC{255)
CCAMUN/ ANZ/FR(O)
CCMMUON/SEC/MH(S)
CUMMON/ZANA/CR(255)
CALL DATA(Nsiv)
C AT THE FIRST NCOE
15=1
NUMBEK=1
NUDE =1
ISMAX=1
L(IS)=0
K{1S)=N
I1D(1S)=0
C FIMND VUBBEK BOUND UB
DU 162 J=14N
162 IY(IS5sJ)=1
StCC=0.90
Du 29 J=1N
29 SECC=SECC+P(JIEMH{Y)
SUMB=04)
DC 30 I=1.sM
CA(IS»I)=C(1)
CRR(1)=C( 1)
ITT=0
DU 31 J=14N
31 ITT=1TT #IXX( 1019 J)
IF(ITTe£ECe1)u0O TO 32
CRR(1)=Je9
32 SUMB=SUMB+CKR(T)
205 Al - - e T e e e R




33
35

37

36

34
859

222
1000

) 2029
382
381

R

383

S5vd

600

Kok
Y\

. Y.

C FIND THe 7

€ USE DuUMmMY NLDE

CONT INJE

CMAXI=CRF(})

DL 35 1=2:M

IF(CMAX I~CRK(I))33+35435
CMAXI=CRR({])

COUNTINUE
SUMC(=SumB-CMAX]
UB=SUMCC+SECC

C FIND LOWLR BOUND

CALL REXP(ISsNM)
ALB(IS)=R(IS)+SECC

C STOGPPING TEST USING SECONDAKY ISGLATION

HSUM=0,

DO 37 J=1N

HSUM=HSUM+MH( J)

IF{(R(ISI+SECC)eLTaHSUM) GG TL 34

UB=HSUM

WRITE(6+361)

FURMAT(/// +5Xs *USE THE SECONDARY [S5CLATION FOR ALL LekeUs?)

GO TU 2752

WRITE(6s856)1S,ALB(1S)

FOURMAY (/7/010X¢°15="913,2X°ALB(]S)="?,F10,3)

WRITE(S 0222

FOCRMAT(//»

CALL DOOMI

CALL FIND

CALL BRAN

WRITE(S5,3

FURMATL( 7/

WRITE(6.+3
10
wu

1 VE =% 4F1063)

A

(

H

IXe *NUDE® 925X TEST? )

)

o}

(

1

(

)

1 29

: }SOJ)OJ=I'N,l(lXX‘IS'IUPT‘J)Ole'N))
’

TA

N
F
C
8
/
&
X 20X +911)
TeS

0
]
1
F ORMAT ( »
P

Q FROM THE MOST PRUM] SING [LRANCH

W ICPT 4 J)
Se10PT 4 J)

X
»x
o~
-~ -
Lol "]

IF(LYS2(J)«EQe0) GO
KS2=KS2+ 1)

CUNTINVE

1S=I SMA X+ 1|
IF(RS16EQetl) GO TO 6
IF(KS2eEQel) GC TC 8

TC 1

WRITE(64383) IS
FORMAT (/7S X+ * NODE® 92X 914 42X, * 1S DUMMY )
I0(1S g ,

1SS MR
KAMETERS CF THE TwUu NODES BRANCHED FRCM THE DUMMY NGDE

TeKS$S1) GU T0L 7

[y
-
-

1eN
LYS2(J)
R}+2

Fe »e UswOlFnn

Nl le O VN ) see
“wt, FXHOUVAwL QODlie ~

st K™ e O e

[Zhe XXl Jak/d

U)A—ﬂ— ']

~m BN A= X T ~0W0n

P PO N Mo~
mY™ nZHH

X~

Ny IGPT)

YT Iy T s -

NPV SN, - A SIS S .



NODE=NZDE+3

ISMAX=] SMAX+3

CALL REXP(1SsNeM)

CALL LOWERB(ISN, ICPT)
: GO Y0-800
. 7 1S=15+)
: DC 3 J=1.N
I1S,0)=LYSLI( V)
I=L(MR) 2

-~
x
Wi
-

FXTun-i
O #
* Xl O
M T
X~
[oeRanll ]
Am”
[ oK ]
vz

L ]

M)
-~ 1eNs IOPT)

U Rl e
m—qn~bhrTﬁ-—mU

v

+

—

oN

0J0 J=1
=LYS2(J)

SeJ)
)=K S2
1S)=15~2

)=LIMR) ¢2

13)=2

DE=NLDL+3

1 SMAX=] SVNAX+ 3

CALL REXP(ISeNsM)

CALL LOWERB(ISsN, IOPT)

GU Tu 800
C FIND THC PARAMET&RS OF THE NEW NGDE
8 DO 700 J=1,
709 1Y(1SeJ)= LYSI(J)
f K(IS)=KS1
6O Tu 10
[ DU 909 J=1N
900 lY(lb.J) LYS2(J)
(1S)=KS2
10 le(l )=MR
LOIS)I=L(M)+1
ID(1I5)=0
CALL REXP(ISeNesM)
CALL LOWERB(ISsN,IOPT)
NUCE=NDDE+ 1]
ISVMAX= I SMAX +1
C STUPPING TEST USING SECCONDARY ISCLATION
830 SUMPHMH=0 .
SUMMH=0
DU 140 J=1sN
IFCIY(ISeJ)eEQeD) GO TO 140
. SUMPAH= SUAPMIH+P( J )2 MH( J)
~ SUMAH= S 1MM H+AH( J)
.. 140 CUNTING
IF(RELS . SUMPMH=SUMMH) 155, 1€€ 4106
1€6 VLE=ALB([3)-R(IS) -SUMPMH+$SUMMH

402

Lot ot Ko O ot N Vit X~ e
PNt {f O~

DCﬁ‘V“<CWnD>mEP‘“<

Y IF(BLL~UB) 400041 06,168
% 400) WRITL(E+976)(1IY( 1Sed)ed=1,N)
£ . S76 FURMAT(///410Ry *USE SECULNDAKY ISOLATICN FOh UNTESTED L ek oUe
§ SAT NUDI? 2X,42011)
>t WRITE(6.870)BLHB
870 FCRMAT(// 410X o' LEB=? 42X ¢F¢€ o3)
¢ ML=(2*%(k(15)-1))-1}
, D0 loYy 1=14Ml
: 169 F(ISsl)=D.
GU TU 167
- 165 IF(ALB(IS)-UB)I333,168,188
] 353 CALL OGINUKA(ISNyM)
‘1 IF(R(I53)=-2)1000417241000




€ LAST NUOE IN THE HBKANCH

( 172

173

SUMP3=0,

DO 173 J=1l.N
IFCIVUIS+J)eEQeD) GO TC 173
SUMP3=SUMP3+P (V)

CONT INVE

C FIND THE ACTUAL EXPECTED COST OF THIS BRANCH

608
C oG
1€7
174
178
176

177

BN={(S5UMP3)2CA(1IS,1)

BL B=ALB(1S )-R( IS )+8N

wRITE(S+380)
WRITE(G6eI3B1)ISe((IY(1SsJ)sJ=1aN)o{IXX(ISelesd) 9J=14N))
WwKITE(5,808)8L8

FURMAT(//+10Xe?BLB=* 4,F10.3)

IF(BLBE-Ub) 167,168,168

TC OTHER BRANCH OF THE DUMMY NCDE TO AVJUST TrE LUWEKR BOUND
IF(L(IS)-1)174,175,174

IFCIDUISS(IS))eNEel) GO YO 175

IF(ID(IS~1)etGel) GO TU 170

GO TU 17?77

I1S=155(1S)

GU Tu 167

1S=15-1

GO T0 167

I1S=1S-¢

JUPD(IS)=1
ALB(IS)=BLB-R(1S+1)
1S=1S+}

CALL LOWERB(IS«N, I10PT)
GU TO 800

C FATHOM THIS WUUE

168
182
: 33D
6006
181
18«

C A FEASIBLE SOLUTION

175

3y2

' C bBACKTHKACK

e 170

292

201
2090

K '
-, a . & o

sk,

LY A\

Ml=(2%*(K(1S)~-1))~-1

FATHOM LAST NODc ANU CANCEL LAST Tt ST *)
1)201,181,201

UB=dLd

whilTh(6,222)UB

WRITE(6+,392)NLDE

FURMAT (// 9 3Xe* NUMBER OF ACTIVE NUDES 1S°',18)
NUAILK=NUMBLKR® ]

Is=1I5MAX

1 ) GU YO 299
) GL Tu 200
1) GO 70 201
) 6L TO 221
-1))-1

l' e,

® Ne=yYin
—j) Xes we o

e mMe MM

se mOMOO

-{r ZXTLe Qe
Mo e =0

«0) GO T0 230

[ Katal4e
} D™ 2 ) # e gy e
U = O C OV
N~
N e
—

TN m KA e = TIN o~ Koo T ™

) GU TC 204
GL TO 204
1))-1

) oo~
= wiNe
| o

)
)
S
)
(
i
L]
E
S
(
7
S
)
(
|
L]

S
i
0
)
.
K
f

oE
£Q
(1
1y
)

O T ot O bt (=0 O T e 5y e
oMo TTCTC=TTYT
~ON~QOWPCO=~~uN~Q~~

(g v~

G
S
M
N

£ede) GO Tu 300

L)




205
204
£9Y

206
300

2752
391

CGWTINUE

1s=1

DO 206 I=1+M
IF(F(IS,1)eNEede) GU TU 300
CONTINUE

GLU TO 2752

ISMAX=1S

GO TO 2002

WRITE(6+391)UB
FORMAT( //7 s5X s *THE OPTIMUM EXPLCTED COST IS *4F1des)
WRITE(6,392 )NULDE

STUP

END

C * ¥ % ¥ % & & % ¥ ¥ % % ¥ ¥ %¥ %x % ¥ & % ¥ ¥ ¥ % ¥ & ¥ ¥ ¥ % ¥ x & % «x
C SUBROUT I NE D AT A
C & % ¥ % % & % % % ¥ ¥ ¥ % %X ¥ % & ¥ £ ¥ % ¥ % ¥ 2 ¥ ¥ ¥ & %X % ¥ & ¥
C PURPUSZ
C DATA IS USED TO KEAD BbOTH CONTKRCL AND DATA CAKRDS
SUBROGUTINE CATA(N,M)
COMMUN/ZABC/IXX(11+425509)
CUMMON/DEF/IXX1(11425599)
COMMON/ANZ/PR(9)
COMMUN/MAG/ZC(255)
CUMMUN/ZJHK /7P (G )
COMMON/SEC /MH(9)
READ (54190 )N M
190 FCORMAT(215)
BRITE(GCs191 )N M
191 FORMAT (1 H)Y o//7 91X e *NUMBER OF LeRKeJde IS4 12010A, *tvUMSER UF TESTS
1LS *,14)
WRITE(6,4301)
301 FORMAT (/776X s 1% 0l 0Xe'IXX(10l0eJd?®)
Du 304 I=leMm
KLADISDs 302)(IXX{1oeled)ed=1eN)
302 FORMAT(1011)
WRITL(O6o9T77 ) el XX(1e]leJ)sd=1eN)
Y77 FURMAT(SXs13,108,1011)
304 (CONTINUE
C FIND IXX1(1oled)
DU 160 1) V¥
CJ 1lecl J=1leN
IFCIXX(3sloJd)eEQel) GU TO 163
IXXi(1eloJd)=1l
GL TOU 1061}
103 IXX1(1e10o2)=0
161 CONTINUE
160 CUNTINUE
WR1ITE(6,195)
195 FOURMAT(IHL /7 023X+ 'CUST LF TESTS* e//)
DU 194 I=1¢sM
READ(9¢6200)C(1)
©09) FURMAT(7F10.7)
WRITE(6,193)1,C(1)
193 FURMAT(10Xe®CCOST UF TEST *e18,2X9%1S°42XeF10e7,47)
194 CONT INJUE
WRITE(64196)
196 FURMAT(///7 96X %I 9 13Xe'P* 3 1SXetMH?)
READ (5192) (P(J)ed=1N)




! 192 FORMAT

H(J)

(

(5

6021 FORMAT(
7

(6

( TesSXe110)

LI 4

C 2 & % ¥ % % % & % ¥ % % & ¥ %X ¥ & % ¥ & & & ® 5 ¥ K ¥ ¥ & £ ¥ & ¥ % ®

C S UBKODUT INE L UWERSHE

C ¥ & % ¥ ¢ %X X ¥ % % % % % %X % % % % % * ¥ % & % % ¥ * % & X & ¥ & F =

PURPOSE
LUWERB 1S USED TO
SUBRGUT INE LOUw
COMMUN/LMNZT Y (
COMMON/KAL /AL B
COUMMON/ZOHIZR( ]
CUMMUN/ZXYZ /1SS
(
9
(

no

THE LOWEF BOUND AT NUDL IS
Se N, 1UPT)

(11)

COMMUNZ B8RC/ CA
COMMUNZ IHK/P(
CUMMUNZANZ /PR
DU 499 J=1.N

499 Pr(J)=P(J)
IS1=155(15)
DU 43 JU=1 N
IFCIY(ISEeJleEUel) GO Tu 43
PriJ)=De

43 CONT]INVE

C SUMPLI=5SU1 LF THEL PRUBILITY OF FATLURE UF THE UNTLSIED LeReUe AT THE

C PREVIOUS NUDc Tu NCOE IS
SUMP L1 =0,
DU 44 J=1sN

44 SUMPL =SUNPL¢PR(J)
IFCIDIIS1)-1) 48,47,48

47 CISS=De
GO Tu &5

ab CIS>=SUMP IsCA(ISLIOPT)
IFCID(1IS)eEQel) GO TC a4t
' a5 ALBCIS)I=ALB(ISI)-RUISLI+R(IS)*CISS
. GL Tu &9
4§ LY ALS{IS)=ALB(ISLI)=R(1I31)+R(IS)¢CISH+R(IS+])
. 49 WRETC(L+8%9)]1SsALB(1S)
- 85% FURMAT (/710X o21S5S="313:2X2'ALB(15)=%F10.3)
ht TURN
- END
.{ C * & 5 % % % % % ¥ & % * ¥ % 3 ¥ % £ ¥ ¥ ¥ %X x ¥ & %X % %X % % ¥ ¥ & B *
1
teny
< C SUBROUT INE BRANCH
- 3
; i C % £ % & % % % % % ¥k ¥ ¥ ¥ ¥ % % ¥ & kX & ¥ ¥ & ¥ ¥ ¥ ¥ X ® R & X X #* =
»
: 1
Ao
¢

e e
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I C PURPLSE
C FIND THE BRANCH I0PT wITH MAXIMUM VALUE OF F(IS,1)
- SUBKOUTINE BRANCH(1S.ICPT)
CUMMONZUVRZ/F(114255)
CUMMONZENT/K(11)
MI=(2%*(K(1S)-1))-1

FMAX=F(IS+1)
DU 96.1=2,M1
‘ IF(FMAX=-F( IS+ 1)) 95:96096
* @5 FMAX=F(ISsI)
i 96 CUNTINUVE

DO 94 I=14M]
IF(F(1Ss]1)eEQeF MAX) GU YO 97
) 94 CUNT INJE
7 10PT=]

FUIS.1)=0.

RETURN

END
C $ ¥ % % % % % % % % % % & & & & 5 5 F F X I E S F P E S ¥y
C SUBRUOUUT I NE F 1 NDF
C * & 5 % % 3 % & %5 ¥ T E X% X XIS E F EF T E St s S

C PURPUSE
| C FINDF 1S USED TO FIND THE VALUES UF F(ISel) UF ALL LRANCHE S 1=1 M1
C AT NUDE 1S5S wHICH WILL BE USED IN THE BRANCHING RULES
SUBKUUT INE F INDF (15,N)
. COMMON/ ABC/ | 11,255,91
: CUMMONZBEC 2C 1+255)
CUMMONZUV &/ F ©255)
COMMUN/LMN/ |
COMMUNZ JHK /P
COMMUN/ BAB/ 1
CUMMUNZENT/ZK
wWRITE(0+B863)
603 FURMAT(///7s1bX 4% 1%323Xs* F(ISs1)%)
Mi=(2**(K(1S)~1))~-i
PPI=SUM UF THE PhOU . OF FAILURE UF ALL UNTESTED LekeUs AT NUDZ 1S
PPZ=SUM UF THE PROB. CF FAILURE OF ALL UNTESTED LekoUe IF THE
TE>T IN BRANCH I PASSES
PP=PRCOABILITY THAT THE TEST N URANCH I wliLlL PASS
. PP1=0.
3 DU 90 J=14N
IFCIY(ISed)s
PP L=PP1+P(J)
- S CUNT INUE
. 0C 91 1=1,Mm)
! IF(INDEX(ISs1)eEQed) GU TO 93
e PP2=0,
1 DU 92 J=14N
1 IXYY=IY (1S e )sIXX(ISeleJd)
¢
3

XX (
Al
(11
v (i
(9)
NLCE
(11

CEX (11e255)
11)

[a1alaXa

91.£Q.0) GC TO 90
(

IH(IXYYEQed) GG TO 92
PP2=PP2¢P(J)
92 CONT INJVE
PP=pPP2/PPI
FOISe [ )==(PP*ALUGIPP )/ ¢6334(1e—=PPISALOG(1a=PP)/e693)/CA(1S5,41)
- GU TU 864¢
X 93 FO(IS.1)=0.
P‘ 8vg WRITE(6+862)1I+sF(1Ss1)




862 FORKMAT(10X+14,20XeF1004)
, 91  CONTINUE
RE TURN
END
C * % % % & & % ¥ ¥ 3 X ¥ %X % % ¥ ¥ & ¥ F X % %x » ¥ ¥ ¥ ¥ ¥ ¥ & ¥ ¥ ¥ x

C SUBRUOUUT INE R E XP

C ¥ ¥ ¥ & X % % % % ¥ ¥ % ¥ ¥ % ¥ % ¥ & %X ¥ % ¥ % ¥ % % ¥ ¥ %X &K ¥ %X ¢

PURPOSE
KEXP 1S USED TU FIND THE MINIMUM EXPECTED CUST Tou FINL MALFUNCT IONED
LehoeUe FROM NGDE IS ‘

SUBROUTINL REXP(ISeNsM)

COUMMGN/LMN/1Y(11,9) !

COMMON/GHIZR(11)+1D(131)

CUMMUN/E NTZK(

COMMON/ JHK /P (

CCMMONZMAGZ7C(

CUMMUNZ AN A/ C

CUMMUN/ ANZ/PR

DU 4] J=1+N

PR (J)=P(J)

IF(IY(1SsJ)eEQel) GO TO 41}
| P{J)=]e

41 CUNT INJVE
C PHAINI=THE MIN]MUM PROGABILITY UF FAILJURE AMUNG THe UNTESTED
C LeRkoeUs AT NLOL (S
. C PMIN2=THL SECUND MINe PKROBABILITY UF FAILJUKE AMUONG THE UNTESTED
: C LekeUs AT NULIE IS
PMINLI=PK(L)
DO 14 J=2 N
IF(PK(J)-PMINL) 13,13,14
13 PMINLI=PR(J)
14 CUNTINUE
DU 1o J=1loN
IF(PR(J)eEQPMINL ) GO TO 17
6 CONTINVUE
7 PrR(J)I=1e
PMINZ=PR(])
. DU 2) J=2+N
IF(PR(JDI-PMINZ) 19419:20
19 PMIN2=PK(J)
A 29 CUNT INUE
bt DU 599 =1 M
. Sy9 CR(I)=C(I)
JJI=M=-K (1S )+1]

[aXala)

1
9
2
(
(

25 CaAx=Cr{(J)
26 CUNTLINVUE
DU 25 KZ=14M
IF(CRIKZ)«EGeCMAX) GL TO 26
25 CUNTINUE

{

1
oy IF(CHMAX-CR(J)) 23,24,24
(]

3

26 CR(KRZ)=0,

- 27  CONTINUE
. X € CS5UA=SUM OF THE (K(ES)-1) MINIMUM CUSTS OF TESTS
1 CSUM=0 .

0C 28 I=1.M




28 CSUM=CSUM+CR(I) i
R(IS)=(PMINL+PMIN2)*CSUM ;

' WRITE(6,839)IS,R(1S) j

- 839 FURMAT(//410X3%15S=® ¢13e3X4°R(1IS)I=V9F10e3) :

15 RETURN

END
C * & & & % % 2 % % & ¥ & & ¥ & X & ® % %X % ¥ & X & ¥ & % % K & & & » @ o
C SUBRUUTINCE D OUMINA
C X % ¥ ¥ ¥ % % ¥ ¥ ¥ % % ¥ & ¥ % ¥ & ¥ % & & ¥ & % & % ¥ ¥ % % %X % @& ¥x ¥
: C PURPUSE
C DUMINA 1S5S USED TO FIND INDEX(IS»sI) AT NODE IS FCLk ALL POSSISBLE
C BRANCHES ‘]
SUBROUTINE DOMINA(IS,N) y
C 1F INODEX(ISe1)=0 eeeBRANCH I 1S DUMINATED BY ANCTHEK tRANCH WHICH
C ITS INDEX EQUALS 1
DIMENSIGI PTL(255) ¢PT2(255)PT(255) oKS31(255) ok5S52(255).CAA(255)
DIMENSION JYSS1(%)e1YS32(9)sPAA(Y) ,
COMMON/ZABC/ZIXX(11 4255 69) !
COMMON/BBC/CA(11+255) !
( COCMMUN/ZOEFZIXX1(11] +2554+9) ;
COMMOGNZIMNZIY(1] +9)
COMMUN/ZENT/ZK(11)
! COMMON/ JHK/P(9)
CUMAON/BAB/ZINDEX(11+255)
MI=(2%8(K(IS)~-1))~-1
. 00 SJ I=1.Mi
! PT1(1)=0.
sz(l )=0.
KS31(1)=D
KSS2(1)=0
DO 51 J=1sN
LIYSS1(J)=1Y(1SsJ) eI XX(ISe]sJ)
1Y5352(J)=1Y(1SeJ)®1IXX1(ISe1eJ)
LFULYSS1(J)eEQed) GU TO 52
KSSI(])=KkSS1(1)+1
PTI(1)=PT1 (1)+P(J)
52 IF(1YSS2(J )eEVeD) WL TL S
. KSS2(1)=k552(1)e} {
PT2(1)=PT2(1)+P(J)
. 51 CUNT INVE
< JFIKRSSI (1) =-KSS2(1)) 54:53,55
. 53 IF(PTICL)-PT2(1)) 584,54,455
S« PIC1)=PT1I(])
GU T0 50
0 55 PT(1)=PT2(1)
;0 50 CUNTINUVE
DU 60 1=1,M]
1 60 CAA(I)I=CA(IS,1)
N C FIND WMINIMUM CCST
! CAAMIN=CAA(])
¢ DO 62 [=2,M} H
IF(CAA(I)-CAAMIN) 6] 461,62
3 61 CAANMIN=CAA( 1)

62 CONTINUE
- DU 63 I1=14M1
% | IF(CAA(1).EU.CAAMIN) GU TO 64
% | 63 CUNTINUE
: €9 CA11=CAA(!)

s ovew




, CAA(I)=103000.
1 I1AA=1
DO 65 1=2,M1
IF(CAA(1)=-C22)664+66,485
Y- C22=CAA(1l)
é5 CONTINUE
PO 79 J=1N
PAA(JI)=PLI)
IFCLIY(1ISesJ)eEQel) GUL TU 70
PAA(J)=1.
79 CUNTINUE
PAAMIN=PAA(L)
DU 73 J=2 N
IF (PAA(J)~-PAAMIN) 72,72,73
72 PAAMIN=PAA(J)
73 CUNTINUE
C CHECK [F THE EKANCH WITH MINIMUM CLST OF TEST DUMINATES ALL UTHER
C ORANCHES OK NGT
LF(CALL-PAAMINSC22) 04476 4,75
74 DL 7o 1=1,M)
70 INDEX(1S,1)=0
GU TO 89
75 IF(KSS1(1AA)-KSS2(1AA)) 77:78,77
77 DO 79 1=1.M1
IF(CALL-FT{IAASCA(I1S5,1)))81,81,82
81 INDEX(1Ssl )=
GU Tu 79
a2z INDEX(ISeI)=1
79 CONTINUE
Gu TU 82
76 DL 83 =] .M}
IFI{KSS1(1)-KSS2
84 1F(CALY1-PT(1AAS
eo INOUX(1Se])=D
oG YO 83
a7 INDEX(ISel =1
GL TO 83
85 IF(K(15)~a)88,89,83
a8 INODEX(1ISel1)=1
GU Tu 83
8y INDEX(1Se1)=0
K] CONTINUE ) A
(] INDEX(1S,1AA)=)

s 84
) 86480 ,,87

RE TURN
END
C $ % 5 % % % & % ¥ 3 & F &% F S EE S 2 S & X S22 &K CE TS
C SUBROUT I NE G ENB KA
C * 8 % & % % & % % % % & & & ¢ & & 3 S St N & X F XL EE
PURPCSE

GENBHA 15 USFD TU GENERATE ALL POSSIBLE BRANCHES FRDM NOLLE IS
THEN FINO THE TE€ST WITH MIN COST IN EACH 8RANCH
SUBKRUUT INE GENBRA{1SsNeM)

noo

DI MENSION lex(ZSS.?)oKel(ZJS)qMMM(ZSS)
CUMMUNZABC ZIXX{ 11425549}

COMMUNZ BBEC/CALL1,4255)

COMMUN/ZDEF ZIXX1{11+255+9)
COUNMMON/LMN/ZIY(1109)

CCMNMON/MAL/ZC(255)




193
124

195
121

106
106

129
102

110
122
123
| g

125
131

128
120
129
130

129
£5)

-
- s
[1 &)

-
L'

COMMCN/ENT/K (11 )
DU 100 I=1.M

-~

) GC TO 119
K{1S)+1)/72)G0 TC 104
(IS+J)I*IXX1(10l,4J)

*
S
(

CONT INVE
DO 105 J=1
IFCIXYX(1,
CUNT INVE
MMM{1)=0
Gu TO 122
DO 100 J=1N
IFCIXYX{TLoeJ)-1Y(ISeJ)) 109,100,109
CONT INUE

w0 TO 121

MMM(I )=

CGONTINUE

GG TO 120

DU 130 JI=1l.M
IF(ROS1I(I)-K(IS)/72)12401294122

D0 123 J=14sN

IXYXCLlo d)=1IY(1SeJ)®]IXX1(2s10d)

DO 125 J=1+N

IFCIXYX(IsJ)eEQel)GL TCL 128
CUNTINUE

MMM(1)=0

GU TU 130

DG 126 J=1 N

IF CIXYXCToJd)=-1Y(1S:J))12941264129
CONTINUE

GU TU 131

MMM(I)=1

CONT] NUE

-7 <Z-A4x~N

+EQel) GG TO 198

e

IXo?I® 20X IXX(ISsleJ)®)
1eM
of]oO) Gu TO 111

DU 112 =Ll oM

1F(VMMM(L )+ EC.0)GC TO 11c

DO 115 J=1 N

IFCIXYX(1] oJ)=IXYX(L sJ))11261154112
CUNTINJVE

MMM(L)=0

IFLC(RM)=C(L))118,118,116

IXX(1 sKM,y J)
J) eEUL1)IGU TC S

COUNTINUE




IR R}
120

- st e
P L
— e e b
W GO0 ~NO©

111
170

L =Y
O o - O
- C,
pow

0

4
V]

Q) r

[i=1eM
1

RO QN
ETCHNODOCCH

oEC.O)GO TC 1112

=] N

IF (IXYX Ted)=1IXYX(LeJ))1113,1115,1113
CUNTINUVE

MMM(L )=

IF(C(RMI-C(L))1118,1118,1116

KM=L

CA(IS,sI)=C(KM)

G0 TO 1700

[v)]
C
-
[ ]
[
S
[ 59

[y
Ce
-Z

1F ( IXY +IXYX(LosJU)=1Y(ISedUdILL12s1014,1110

o [T, o~
oo

1KMo J)
Qel)GU TC 1005

o Yo = ¢ oy ==
HCw2Z
.
m&

e L
- we jle
O "wX

b= (Ne

H
1
»
1
.

CUNTINUE
CONT INVE
1=1+}

CONT INUE
Ml=(2%% (K (
DO 85 1=1
WRITE(6,85
t ORMAT(10X
CUNTINUE
RETURN

END

18)~-
W M1
1)1,
w14,

Seled)ed=1,N)
1)







